

	<u>N</u>	Users of Multiple Discrete Processors, N=108	Users of Multicore. N=115	Users of Both, N=123
Normal C/C++	307	88.0%	88.7%	89.4%
Titanium (Java)	42	13.0%	11.3%	12.2%
OpenMP	27	13.0%	4.3%	6.5%
MPI	18	10.2%	3.5%	2.4%
Unified Parallel C	23	7.4%	3.5%	8.9%
CAF (Fortran)	4	2.8%	0.0%	0.8%
Other	28	7.4%	6.1%	10.6%

New execution model for manycore architectures

- More than 100 processor architecture involve:
 - ✓ New programming model for the users in order to express the parallelism;
 - ✓ Deterministic and dependable architecture.
- 2 majors consequences:
 - ✓ On the SW tool part :
 - →Code generation tools have to produce code for processing, communication, memorization and control;
 - → Synthesis of embedded OS.
 - ✓ On the Architecture part :
 - →The control part is more and more important and complexe;
 - → Management of matrix of elements with compromises.

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette

7

Key technologies for manycore architectures (1)

- Architecture definition :
 - ✓ Definition and validation of the architecture and its execution model :
 - → Heterogeneous architecture or Homogeneous architecture?
 - → Distributed memory, shared memory or both?
 - →Which topology?
 - → Task management policy: Fully dynamic, fully static, self-time or Static assignment scheduling? Centralized or distributed?
 - → Energy and reliability aware architectures.

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette

8

Key technologies for manycore architectures (2)

Software tools

- √ The complexity and the efficiency depend on the programming language;
- ✓ As for FPGA, Mapping tools, Placing Tools and Routing Tools;
- √ More the scheduling is complexe, « simpler» are the tools (analogy with VLIW processors and the Superscalar processors).

Embedded system Software

- ✓ If the mapping, place and route are not done during the compilation, they have to be executed during the run-time,
- ✓ Processing, Memorisation and communication must be ensured at the run time.
- ✓ Energy and reliability management.

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette

Key technologies for manycore architectures (3)

Architecture design

- √ Topology design (Organisation of the matrix of processors, Memory Mapping, Communication supports, I/O, ...);
- ✓ Design of the support for embedded system SW (SW/HW tradeoff, centric vs distributed, etc);
- ✓ Design of a power and reliability awared architecture.

Component design

- √ Manycore is possible on advanced technology (ie 65) ns or less);
- ✓ Design of low power elements (Processor for instance);
- ✓ Design of a component of more than 100 processor.

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette

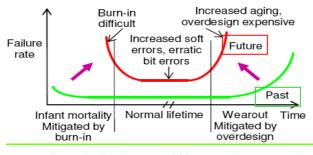
MPPATM* solution (1)

Is a component easy to used:

- ✓ The user ignore the architecture (ex: the number of processors);
- ✓ Programming language based on C able to express to parallelism:
 - →Think parallel,
 - →Easy to used,
 - → Predictability.
- Offers transparent access to the matrix of cores :
 - ✓ Software toolchain
 - → Application code generation and embedded system software code generation,
 - → Dynamic and Dependable computing.

* Multi Purpose Processor Array

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette


MPPATM solution (2)

Offers high computing performance, low power, reliability and dependability management:

✓ Advanced execution model (TLP, control,...)

- Able to cope with the next generations of technologies
 - ✓ Embedded diagnosis:
 - → Static for computing for manufacturing,
 - →Online for Self Healing computing.

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette


MPPA™ component

- Not multi, but many processors :
 - √ up to 100
 - ✓ Transparent scalability
- Dependability and real time with a advanced execution model and the synthesis of services
- Advanced embedded OS for the management of performance, energy and reliability
 - √ SW/HW & centralised/distributed solutions.
 - Reliability within a homogeneous platform
 - Advanced I/O management inside the component
 - ✓ Many I/O
 - √ Real time management

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette

13

Conclusions

- From matrix of gates or CLB to a matrix of Processors (Many more than multi);
- Performance, low power, reliability and dependability;
- Generation of management services inside the component;
- Computation, memorization and communication (int&ext);
- Parallel and reconfigurable computing on unreliable technology:
 - →Adaptative computing,
 - → Self healing computing.

15

Embedded Computing Solutions - MPSOC2008 - 25 june 2008 - Thierry Collette